Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.524
Filtrar
1.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
2.
Respir Res ; 25(1): 160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600524

RESUMO

BACKGROUND: No effective therapies for pulmonary fibrosis (PF) exist because of the unclear molecular pathogenesis and the lack of effective therapeutic targets. Zinc finger protein 451 (ZNF451), a transcriptional regulator, plays crucial roles in the pathogenesis of several diseases. However, its expression pattern and function in PF remain unknown. This study was designed to investigate the role of ZNF451 in the pathogenesis of lung fibrosis. METHODS: GEO dataset analysis, RT‒PCR, and immunoblot assays were used to examine the expression of ZNF451 in PF; ZNF451 knockout mice and ZNF451-overexpressing lentivirus were used to determine the importance of ZNF451 in PF progression; and migration assays, immunofluorescence staining, and RNA-seq analysis were used for mechanistic studies. RESULTS: ZNF451 is downregulated and negatively associated with disease severity in PF. Compared with wild-type (WT) mice, ZNF451 knockout mice exhibited much more serious PF changes. However, ZNF451 overexpression protects mice from BLM-induced pulmonary fibrosis. Mechanistically, ZNF451 downregulation triggers fibroblast activation by increasing the expression of PDGFB and subsequently activating PI3K/Akt signaling. CONCLUSION: These findings uncover a critical role of ZNF451 in PF progression and introduce a novel regulatory mechanism of ZNF451 in fibroblast activation. Our study suggests that ZNF451 serves as a potential therapeutic target for PF and that strategies aimed at increasing ZNF451 expression may be promising therapeutic approaches for PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Pulmão/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais
3.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
4.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Assuntos
Ganoderma , Materia Medica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Materia Medica/farmacologia , Espectrometria de Massas em Tandem , Fibrose , Pulmão
5.
Bioorg Chem ; 146: 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537336

RESUMO

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Bleomicina/efeitos adversos
6.
Artif Cells Nanomed Biotechnol ; 52(1): 201-217, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488151

RESUMO

The main purpose of this study was to explore the changes of biomarkers in different developmental stages of bleomycin-induced pulmonary fibrosis (PF) in rats via comprehensive pathophysiology, UPLC-QTOF/MS metabonomic technology, and 16S rRNA gene sequencing of intestinal microbiota. The rats were randomly divided into normal control and 1-, 2- and 4-week model group. The rat model of PF was established by one-time intratracheal instillation of bleomycin. The levels of inflammatory and fibrosis-related factors such as hydroxyproline (HYP), type III procollagen (COL-III), type IV collagen (COL-IV), hyaluronidase (HA), laminin (LN), interleukin (IL)-1ß, IL-6, malondialdehyde (MDA) increased and superoxide dismutase (SOD) decreased as the PF cycle progressed. In the 1-, 2- and 4-week model group, 2, 19 and 18 potential metabolic biomarkers and 3, 16 and 12 potential microbial biomarkers were detected, respectively, which were significantly correlated. Glycerophospholipid metabolism pathway was observed to be an important pathway affecting PF at 1, 2 and 4 weeks; arginine and proline metabolism pathways significantly affected PF at 2 weeks. Linoleic acid metabolism pathway exhibited clear metabolic abnormalities at 2 and 4 weeks of PF, and alpha-linolenic acid metabolism pathway significantly affected PF at 4 weeks.


In this study, metabolomics technology and intestinal microbiota 16S rRNA gene sequencing were used to search for biomarkers with significant differences in each stage of pulmonary fibrosis. Finally, the variation characteristics of each stage of the disease were discussed. The hope is to provide new insights into the development of diagnostic biomarkers and potential therapeutic targets at all stages.


Assuntos
Microbioma Gastrointestinal , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , RNA Ribossômico 16S , Bleomicina/efeitos adversos , Biomarcadores
7.
Chem Biol Drug Des ; 103(3): e14508, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514749

RESUMO

Pulmonary Fibrosis (PF) is a fatal lung disease with complicated pathogenesis. Astragaloside IV (ASV) has been discovered to alleviate PF progression, and the potential molecular mechanism of ASV in the development of PF need to be further clarified. Bleomycin (BLM) was used to construct PF in vivo model. Expression levels of circ_0008898, miR-211-5p, high mobility group protein B1 (HMGB1), alpha smooth muscle Actin (α-SMA) and Collagen I were examined by Quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Cell survival was analyzed using Cell Counting Kit-8 (CCK-8) and EdU (5-ethynyl-2'-deoxyuridine) assay. The invasion abilities were investigated by transwell assay. The levels of inflammatory factors were tested via using Enzyme-linked immunosorbent assay (ELISA). The relationship between circ_0008898 or HMGB1 and miR-211-5p was identified by dual-luciferase reporter assay. The results showed that ASV attenuated BLM-induced pulmonary fibrosis in vivo. In vitro study, ASV alleviated TGF-ß1-induced fibrogenesis in HFL1 cells. Circ_0008898 was increased in TGF-ß1-induced HFL1 cells. ASV-induced impacts were abrogated by circ_0008898 overexpression in TGF-ß1-induced HFL1 cells. Mechanistically, circ_0008898 competitively bound to miR-211-5p to increase the expression of its target HMGB1. MiR-211-5p deficiency rescued ASV-mediated effects in TGF-ß1-induced HFL1 cells. In addition, HMGB1 overexpression partially overturned circ_0008898 interference-induced impacts in HFL1 cells upon TGF-ß1 treatment. In conclusion, our work manifested that ASV hindered PF process by mediating the circ_0008898/miR-211-5p/HMGB1 network.


Assuntos
Proteína HMGB1 , MicroRNAs , Fibrose Pulmonar , Saponinas , Triterpenos , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Fator de Crescimento Transformador beta1/genética , Proteína HMGB1/genética , MicroRNAs/genética , Proliferação de Células
8.
Reumatismo ; 76(1)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38523580

RESUMO

OBJECTIVE: Scleroderma, or systemic sclerosis (SSc), is a chronic autoimmune connective disease with an unknown etiology and poorly understood pathogenesis. The striking array of autoimmune, vascular, and fibrotic changes that develop in almost all patients makes SSc unique among connective tissue diseases. Although no animal model developed for SSc to date fully represents all features of human disease, some animal models that demonstrate features of SSc may help to better understand the pathogenesis of the disease and to develop new therapeutic options. In this review, we aimed to evaluate skin fibrosis and lung involvement in a bleomycin (BLM)-induced mouse model and to evaluate the differences between studies. METHODS: A systematic literature review (PRISMA guideline) on PubMed and EMBASE (until May 2023, without limits) was performed. A primary literature search was conducted using the PubMed and EMBASE databases for all articles published from 1990 to May 2023. Review articles, human studies, and non-dermatological studies were excluded. Of the 38 non-duplicated studies, 20 articles were included. RESULTS: Among inducible animal models, the BLM-induced SSc is still the most widely used. In recent years, the measurement of tissue thickness between the epidermal-dermal junction and the dermal-adipose tissue junction (dermal layer) has become more widely accepted. CONCLUSIONS: In animal studies, it is important to simultaneously evaluate lung tissues in addition to skin fibrosis induced in mice by subcutaneous BLM application, following the 3R (replacement, reduction, and refinement) principle to avoid cruelty to animals.


Assuntos
Fibrose Pulmonar , Escleroderma Sistêmico , Dermatopatias , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Bleomicina/toxicidade , Pele/patologia , Fibrose , Escleroderma Sistêmico/patologia , Dermatopatias/patologia , Modelos Animais de Doenças
9.
Sci Total Environ ; 923: 171396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438032

RESUMO

The presence of respiratory diseases demonstrates a positive correlation with atmospheric fine particulate matter (PM2.5) exposure. The respiratory system is the main target organ affected by PM2.5, and exposure to PM2.5 elevates the likelihood of developing pulmonary fibrosis (PF). In this study, lung epithelial cell (BEAS-2B) and fibroblast (NIH-3T3) were used as in vitro exposure models to explore the mechanisms of PF. PM2.5 exposure caused mitochondrial damage in BEAS-2B cells and increased a fibrotic phenotype in NIH-3T3 cells. Epithelial cells and fibroblasts have different fates after PM2.5 exposure due to their different sensitivities to trigger autophagy. Exposure to PM2.5 inhibits mitophagy in BEAS-2B cells, which hinders the removal of damaged mitochondria and triggers cell death. In this process, the nuclear retention of the mitophagy-related protein Parkin prevents it from being recruited to mitochondria, resulting in mitophagy inhibition. In contrast, fibroblasts exhibit increased levels of autophagy, which may isolate PM2.5 and cause abnormal fibroblast proliferation and migration. Fibrotic phenotypes such as collagen deposition and increased α-actin also appear in fibroblasts. Our results identify PM2.5 as a trigger of PF and delineate the molecular mechanism of autophagy in PM2.5 induced PF, which provides new insights into the pulmonary injury.


Assuntos
Poluentes Atmosféricos , Fibrose Pulmonar , Animais , Camundongos , Material Particulado/toxicidade , Material Particulado/análise , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Autofagia
10.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460002

RESUMO

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Epiteliais Alveolares , Transição Epitelial-Mesenquimal/genética , Quinase 8 Dependente de Ciclina/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Redox Biol ; 71: 103102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430684

RESUMO

Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin ß1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/ß1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor ß1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.


Assuntos
Bromatos , Proteínas da Matriz Extracelular , Fibrose Pulmonar , Humanos , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Brometos/efeitos adversos , Brometos/metabolismo , Laminina/genética , Laminina/metabolismo , Matriz Extracelular/metabolismo , Pulmão/metabolismo , 60581 , Colágeno Tipo IV/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Tirosina/metabolismo
12.
Int Immunopharmacol ; 131: 111774, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489971

RESUMO

Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.


Assuntos
Amidas , COVID-19 , Pneumonia , Fibrose Pulmonar , Pirazinas , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos , Inflamação/metabolismo , Fibrose , Pneumonia/metabolismo , COVID-19/metabolismo
13.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493696

RESUMO

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Heme Oxigenase-1/metabolismo , Antioxidantes/farmacologia , beta Catenina/metabolismo , PPAR gama/metabolismo , Óxido Nítrico/metabolismo , Pulmão/patologia , Fibrose , Arginina/uso terapêutico
14.
Int Immunopharmacol ; 130: 111734, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38422768

RESUMO

Pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. Selinexor (Sel), an orally available, small-molecule, selective inhibitor of XPO1, exhibits notable antitumor, anti-inflammatory and antiviral activities. However, its potential role in treating pulmonary fibrosis is unknown. C57BL/6J mice were used to establish a pulmonary fibrosis model by intratracheal administration of bleomycin (BLM). Subsequently, Sel was administered intraperitoneally. Our data demonstrated that Sel administration ameliorated BLM-induced pulmonary fibrosis by increasing mouse body weights; reducing H&E staining, Masson staining scores, and shadows in mouse lung computed tomography (CT) images, decreasing the total cell and neutrophil counts in the lung and bronchoalveolar lavage fluid (BALF); and decreasing the levels of TGF-ß1. We next confirmed that Sel reduced the deposition of extracellular matrix (ECM) components in the lungs of BLM-induced pulmonary fibrosis mice. We showed that collagen I, alpha-smooth muscle actin (α-SMA), and hydroxyproline levels and the mRNA levels of Col1a1, Eln, Fn1, Ctgf, and Fgf2 were reduced. Mechanistically, tandem mass tags (TMT)- based quantitative proteomics analysis revealed a significant increase in GBP5 in the lungs of BLM mice but a decrease in that of BLM + Sel mice; this phenomenon was confirmed by western blotting and RT-qPCR. NLRP3 inflammasome signaling was significantly enriched in both the BLM group and BLM + Sel group based on GO and KEGG analyses of differentially expressed proteins between the groups. Furthermore, Sel reduced the expression of NLRP3, cleaved caspase 1, and ASC in vivo and in vitro, and decreased the levels of IL-1ß, IL-18, and IFN-r in lung tissue and BALF. SiRNA-GBP5 inhibited NLRP3 signaling in vitro, and overexpression of GBP5 inhibited the protective effect of Sel against BLM-induced cellular injury. Taken together, our findings indicate that Sel ameliorates BLM-induced pulmonary fibrosis by targeting GBP5 via NLRP3 inflammasome signaling. Thus, the XPO1 inhibitor - Sel might be a potential therapeutic agent for pulmonary fibrosis.


Assuntos
Hidrazinas , Fibrose Pulmonar , Triazóis , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Inflamassomos/metabolismo , Bleomicina/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia
15.
J Hazard Mater ; 468: 133704, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364577

RESUMO

Our previous study revealed that 1-nitropyrene (1-NP) exposure evoked pulmonary fibrosis in mice. However, the exact mechanism remained elusive. We found that 1-NP induced telomere damage and cellular senescence in mice lungs, and two alveolar epithelial cells lines. 1-NP downregulated telomere repeat binding factor 2 (TRF2), and upregulated FBXW7. Mechanistically, 1-NP-caused TRF2 ubiquitination and proteasomal degradation depended on E3 ubiquitin ligase activity of FBXW7. Moreover, 1-NP upregulated FBXW7 m6A modification via an ALKBH5-YTHDF1-dependent manner. Further analysis suggested 1-NP promoted ALKBH5 SUMOylation and subsequent proteasomal degradation. Additionally, 1-NP evoked mitochondrial reactive oxygen species (mtROS) overproduction. Mito-TEMPO, a mitochondrial-targeted antioxidant, mitigated 1-NP-caused mtROS overproduction, ALKBH5 SUMOylation, FBXW7 m6A modification, TRF2 degradation, cellular senescence, and pulmonary fibrosis. Taken together, mtROS-initiated ALKBH5 SUMOylation and subsequent FBXW7 m6A modification is indispensable for TRF2 degradation and cellular senescence in alveolar epithelial cells during 1-NP-induced pulmonary fibrosis. Our study provides target intervention measures towards 1-NP-evoked pulmonary fibrosis.


Assuntos
Adenina/análogos & derivados , Fibrose Pulmonar , Pirenos , Sumoilação , Animais , Camundongos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar/induzido quimicamente
16.
Int J Biol Macromol ; 262(Pt 2): 130052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342257

RESUMO

Radiation-Induced Pulmonary Fibrosis (RIPF) frequently arises as a delayed complication following radiation therapy for thoracic cancers, encompassing lung, breast, and esophageal malignancies. Characterized by a relentless and irreversible accumulation of extracellular matrix (ECM) proteins within the lung parenchyma, RIPF presents a significant clinical challenge. While the modulation of gene expression by transcription factors is a recognized aspect in various pathologies, their specific role in the context of RIPF has been less clear. This study elucidates that ionizing radiation prompts the translocation of the transcription factor GATA3 into the nucleus. This translocation facilitates GATA3's binding to the NRP1 promoter, thereby enhancing the transcription and subsequent translation of NRP1. Further investigations demonstrate that the TGF-ß pathway agonist, SRI-011381, can mitigate the effects of NRP1 knockdown on epithelial-mesenchymal transition (EMT) and ECM deposition, suggesting a pivotal role of the GATA3/NRP1/TGF-ß axis in the pathogenesis of RIPF. In conclusion, our findings not only underscore the critical involvement of GATA3 in RIPF but also highlight the GATA3/NRP1/TGF-ß signaling pathway as a promising target for therapeutic intervention in RIPF management.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/uso terapêutico , Transdução de Sinais/fisiologia , Pulmão/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Transição Epitelial-Mesenquimal/genética
17.
Artigo em Chinês | MEDLINE | ID: mdl-38311943

RESUMO

Objective: To exploring the regulatory effect of miR-29a on the transforming growth factor-ß1 (TGF-ß1) /Smad homolog 3 (Smad3) pathway during the process of rare earth neodymium oxide (Nd(2)O(3)) induced pulmonary fibrosis in mice. Methods: In March 2021, 72 SPF grade C57/BL6J male mice were selected and randomly divided into a control group, Nd(2)O(3) group, Nd(2)O(3)+miR-29a agomir group, and Nd(2)O(3)+NC agomir group, with 18 mice in each group. The Nd(2)O(3) group, Nd(2)O(3)+miR-29a agomir group, and Nd(2)O(3)+NC agomir group were treated with non exposed tracheal instillation, with a dust concentration of 250 mg/ml and a dust volume of 0.1 ml. The control group was given the same volume of physiological saline. After exposure to Nd(2)O(3), 0.1 ml (5 nmol) of miR-29a agomir was injected into the tail vein of mice in the Nd(2)O(3)+miR-29a agomir group every 3 days, while 0.1 ml of NC agomir was injected into the tail vein of mice in the Nd(2)O(3)+NC agomir group. On the 7 th, 14 th, and 28 th days after dust exposure, 6 mice were killed in each group, and the lung tissue of the mice was taken out. HE staining was used to observe the pathological status of the mouse lung tissue; ELISA method was used to detect the levels of TGF-ß1 and connective tissue growth factor (CTGF) in lung tissue; Use qRT-PCR detection method to detect the expression level of TGF-ß1 mRNA; Using immunofluorescence assay to detect the expression level of Smad3 in mouse lung tissue; Use bioinformatics websites such as TargetScan7 and miRDB to predict the target gene of miR-29a. When the metrological date were satisfied with normal distribution, Mean±SD was used for comparison between groups, t test was used for two indepent samples, and LSD method was used when the variance was homogeneity in pairwise comparison. Results: HE staining showed that the Nd(2)O(3) group of mice showed obvious infiltration of inflammatory cells and structural disorder of alveoli in the early stage of lung tissue. At 28 days, the collagen fibers in the mouse lung tissue increased and the lung tissue showed fibrotic honeycomb like changes. The degree of pulmonary fibrosis in the Nd(2)O(3)+miR-29a agomir group of mice was significantly reduced; The content of TGF-ß1 and CTGF in the lung tissue of mice in the Nd(2)O(3)+miR-29a agomir group was lower than that in the Nd(2)O(3)+NC agomir group (P<0.05) ; The relative expression level of TGF-ß1 in the lung tissue of mice in the Nd(2)O(3)+miR-29a agomir group was lower than that in the Nd(2)O(3)+NC agomir group (P<0.05) ; The expression level of Smad3 in the nucleus of the Nd(2)O(3)+miR-29a agomir group was lower than that of the Nd(2)O(3)+NC agomir group (P<0.05). The prediction results of bioinformatics websites have found 152 downstream target genes related to miR-29a, among which FBN1, MAP2K6, KPNB1, COL1A2, SNIP1, LAMC1, and SP1 genes may be related to the regulatory effect of miR-29a on TGF-ß1/Smad3 signaling pathway. Conclusion: miR-29a may affect lung fibrosis induced by rare earth Nd(2)O(3) exposure in mice by regulating TGF-ß1/Smad3 signaling pathway. Overexpression of miR-29a may inhibit TGF-ß1/Smad3 signaling pathway and reduce the degree of pulmonary fibrosis in mice.


Assuntos
MicroRNAs , Neodímio , Óxidos , Fibrose Pulmonar , Animais , Masculino , Camundongos , Poeira , Fibrose , MicroRNAs/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad3/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339194

RESUMO

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Assuntos
Antineoplásicos , Benzamidas , Lesão Pulmonar , Fibrose Pulmonar , Pirazóis , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Ácido Clorídrico/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais/metabolismo , Antineoplásicos/efeitos adversos , Gefitinibe/efeitos adversos , Proteínas de Choque Térmico HSP90/metabolismo
19.
Biomarkers ; 29(2): 45-54, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38314578

RESUMO

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is the most serious form of interstitial lung disease. We aimed to investigate the effect of Phœnix dactylifera, L. seed oil (DSO) on a murine model of IPF induced by bleomycin (BLM). METHODS: Male Wistar rats were treated with a single intra-tracheal injection of BLM (4 mg/kg) and a daily intraperitoneal injection of DSO (75, 150 and 300 mg/kg) for 4 weeks. RESULTS: Our phytochemical results showed that DSO has an important antioxidant activity with a high content of polyphenols and flavonoids. High-Performance Liquid Chromatography (HPLC) and Gas chromatography/mass spectrometry (GC-MS) analysis revealed a high amount of oleic and lauric acids and a large quantity of vitamins. Histological examination showed a significant reduction in fibrosis score and collagen bands in the group of rats treated with 75 mg/kg of DSO compared to the BLM group. DSO (75 mg/kg) reversed also the increase in catalase and malondialdehyde (MDA) levels while higher doses (150 and 300 mg/kg) are ineffective against the deleterious effects of BLM. We revealed also that DSO has no renal or hepatic cytotoxic effects. CONCLUSION: DSO can play antioxidant and antifibrotic effects on rat models of pulmonary fibrosis at the lowest dose administered.


Assuntos
Phoeniceae , Fibrose Pulmonar , Ratos , Masculino , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Ratos Wistar , Bleomicina/efeitos adversos , Pulmão/patologia , Estresse Oxidativo , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia
20.
J Hazard Mater ; 467: 133713, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335607

RESUMO

As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.


Assuntos
Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Monócitos , Neutrófilos , Ligantes , Lipossomos , Fibrose , Quimiocina CCL3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...